The Analyst's Traveling Salesman Problem asks for conditions under which a (finite or infinite) subset of $\mathbb{R}^N$ is contained on a curve of finite length. We show that for finite sets, the algorithm constructed by Schul (2007)and Badger-Naples-Vellis (2019) that solves the Analyst's Traveling Salesman Problem has polynomial time complexity and we determine the sharp exponent.
翻译:分析家的《旅行销售员问题 》 ( Traveling Salesman problem) 要求具备一定长度曲线上包含$( mathbb{R ⁇ N$)的( 无限或无限) 子集的条件。 我们显示, 对于有限数组, 由Schul (2007 ) 和 Badger- Napples- Vellis ( 2019 ) 构建的算法解决分析师的旅行销售员问题, 它具有多种时间复杂性, 我们决定精确的推论 。