The computation of collision probability ($\mathcal{P}_c$) is crucial for space environmentalism and sustainability by providing decision-making knowledge that can prevent collisions between anthropogenic space objects. However, the accuracy and precision of $\mathcal{P}_c$ computations is often compromised by limitations in computational resources and data availability. While significant improvements have been made in the computational aspects, the rising concerns regarding the privacy of collaborative data sharing can be a major limiting factor in the future conjunction analysis and risk assessment, especially as the space environment grows increasingly privatized, competitive, and fraught with conflicting strategic interests. This paper argues that the importance of privacy measures in space situational awareness (SSA) is underappreciated, and regulatory and compliance measures currently in place are not sufficient by themselves, presenting a significant gap. To address this gap, we introduce a novel encrypted architecture that leverages advanced cryptographic techniques, including homomorphic encryption (HE) and multi-party computation (MPC), to safeguard the privacy of entities computing space sustainability metrics, inter alia, $\mathcal{P}_c$. Our proposed protocol, Encrypted $\mathcal{P}_c$, integrates the Monte Carlo estimation algorithm with cryptographic solutions, enabling secure collision probability computation without exposing sensitive or proprietary information. This research advances secure conjunction analysis by developing a secure MPC protocol for $\mathcal{P}_c$ computation and highlights the need for innovative protocols to ensure a more secure and cooperative SSA landscape.
翻译:暂无翻译