Hashing based cross-modal retrieval has recently made significant progress. But straightforward embedding data from different modalities into a joint Hamming space will inevitably produce false codes due to the intrinsic modality discrepancy and noises. We present a novel Robust Multilevel Semantic Hashing (RMSH) for more accurate cross-modal retrieval. It seeks to preserve fine-grained similarity among data with rich semantics, while explicitly require distances between dissimilar points to be larger than a specific value for strong robustness. For this, we give an effective bound of this value based on the information coding-theoretic analysis, and the above goals are embodied into a margin-adaptive triplet loss. Furthermore, we introduce pseudo-codes via fusing multiple hash codes to explore seldom-seen semantics, alleviating the sparsity problem of similarity information. Experiments on three benchmarks show the validity of the derived bounds, and our method achieves state-of-the-art performance.


翻译:以混凝土为基础的跨模式检索最近取得了显著进展。 但是,将不同模式的数据直接嵌入联合哈姆明空间将不可避免地产生假代码,因为内在模式差异和噪音。 我们展示了一部新颖的强势多层次语义散列(RMSH),以便更精确的跨模式检索。它试图保持富含语义的数据之间细微的相似性,同时明确要求不同点之间的距离大于强力的特定值。 为此,我们根据信息编码理论分析,将这一值有效地结合到一个有效范围内,而上述目标则被包含在适应差值的三重损中。 此外,我们引入了假代码,通过使用多层散列码来探索少见的语义拼写法,缓解相似信息的宽度问题。 对三个基准的实验显示了衍生界限的有效性,而我们的方法达到了最先进的性能。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年6月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Arxiv
9+阅读 · 2018年5月7日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关论文
Top
微信扫码咨询专知VIP会员