As a structured representation of the image content, the visual scene graph (visual relationship) acts as a bridge between computer vision and natural language processing. Existing models on the scene graph generation task notoriously require tens or hundreds of labeled samples. By contrast, human beings can learn visual relationships from a few or even one example. Inspired by this, we design a task named One-Shot Scene Graph Generation, where each relationship triplet (e.g., "dog-has-head") comes from only one labeled example. The key insight is that rather than learning from scratch, one can utilize rich prior knowledge. In this paper, we propose Multiple Structured Knowledge (Relational Knowledge and Commonsense Knowledge) for the one-shot scene graph generation task. Specifically, the Relational Knowledge represents the prior knowledge of relationships between entities extracted from the visual content, e.g., the visual relationships "standing in", "sitting in", and "lying in" may exist between "dog" and "yard", while the Commonsense Knowledge encodes "sense-making" knowledge like "dog can guard yard". By organizing these two kinds of knowledge in a graph structure, Graph Convolution Networks (GCNs) are used to extract knowledge-embedded semantic features of the entities. Besides, instead of extracting isolated visual features from each entity generated by Faster R-CNN, we utilize an Instance Relation Transformer encoder to fully explore their context information. Based on a constructed one-shot dataset, the experimental results show that our method significantly outperforms existing state-of-the-art methods by a large margin. Ablation studies also verify the effectiveness of the Instance Relation Transformer encoder and the Multiple Structured Knowledge.
翻译:作为图像内容的结构化表达,视觉场景图(视觉关系)作为计算机视觉和自然语言处理之间的桥梁。在现场图生成任务的现有模型中,臭名昭著地需要数十或数百个标签样本。相比之下,人类可以从几个甚至一个例子中学习视觉关系。受此启发,我们设计了一个名为“单片场景图集”的任务,每个三重关系(例如,“狗头”)都来自一个标记的例子。关键洞察力是,比起从零开始学习,人们可以利用丰富的先前知识。在本文中,我们为一发图像生成任务提议多结构知识(关系知识与常识知识 ) 。 相比之下, 人类关系图集知识代表了从视觉内容中提取的实体之间的先前关系知识。 例如, 视觉关系“ 嵌入” 可能存在于“ 狗头” 和“ 院子” 之间, 关键洞察力是, 将“ 精密” 知识编码为“ 智能” 知识, 比如, CN 宝座院 。, 我们提议多层次 。 通过组织这些直观数据结构图集,, 模拟 将 数据 复制 数据 生成 数据 数据 系统 系统 生成 生成 数据 数据 数据 生成 数据 数据, 系统 系统 生成 系统 数据 数据 数据, 生成 数据 生成,,, 系统,, 系统 系统,,,,, 系统 系统 系统 生成 数据 数据 生成,, 数据 生成,,, 数据,,, 生成,, 生成, 生成 生成 生成,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 。