As a structured representation of the image content, the visual scene graph (visual relationship) acts as a bridge between computer vision and natural language processing. Existing models on the scene graph generation task notoriously require tens or hundreds of labeled samples. By contrast, human beings can learn visual relationships from a few or even one example. Inspired by this, we design a task named One-Shot Scene Graph Generation, where each relationship triplet (e.g., "dog-has-head") comes from only one labeled example. The key insight is that rather than learning from scratch, one can utilize rich prior knowledge. In this paper, we propose Multiple Structured Knowledge (Relational Knowledge and Commonsense Knowledge) for the one-shot scene graph generation task. Specifically, the Relational Knowledge represents the prior knowledge of relationships between entities extracted from the visual content, e.g., the visual relationships "standing in", "sitting in", and "lying in" may exist between "dog" and "yard", while the Commonsense Knowledge encodes "sense-making" knowledge like "dog can guard yard". By organizing these two kinds of knowledge in a graph structure, Graph Convolution Networks (GCNs) are used to extract knowledge-embedded semantic features of the entities. Besides, instead of extracting isolated visual features from each entity generated by Faster R-CNN, we utilize an Instance Relation Transformer encoder to fully explore their context information. Based on a constructed one-shot dataset, the experimental results show that our method significantly outperforms existing state-of-the-art methods by a large margin. Ablation studies also verify the effectiveness of the Instance Relation Transformer encoder and the Multiple Structured Knowledge.


翻译:作为图像内容的结构化表达,视觉场景图(视觉关系)作为计算机视觉和自然语言处理之间的桥梁。在现场图生成任务的现有模型中,臭名昭著地需要数十或数百个标签样本。相比之下,人类可以从几个甚至一个例子中学习视觉关系。受此启发,我们设计了一个名为“单片场景图集”的任务,每个三重关系(例如,“狗头”)都来自一个标记的例子。关键洞察力是,比起从零开始学习,人们可以利用丰富的先前知识。在本文中,我们为一发图像生成任务提议多结构知识(关系知识与常识知识 ) 。 相比之下, 人类关系图集知识代表了从视觉内容中提取的实体之间的先前关系知识。 例如, 视觉关系“ 嵌入” 可能存在于“ 狗头” 和“ 院子” 之间, 关键洞察力是, 将“ 精密” 知识编码为“ 智能” 知识, 比如, CN 宝座院 。, 我们提议多层次 。 通过组织这些直观数据结构图集,, 模拟 将 数据 复制 数据 生成 数据 数据 系统 系统 生成 生成 数据 数据 数据 生成 数据 数据, 系统 系统 生成 系统 数据 数据 数据, 生成 数据 生成,,, 系统,, 系统 系统,,,,, 系统 系统 系统 生成 数据 数据 生成,, 数据 生成,,, 数据,,, 生成,, 生成, 生成 生成 生成,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
25+阅读 · 2022年1月3日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员