Understanding realistic visual scene images together with language descriptions is a fundamental task towards generic visual understanding. Previous works have shown compelling comprehensive results by building hierarchical structures for visual scenes (e.g., scene graphs) and natural languages (e.g., dependency trees), individually. However, how to construct a joint vision-language (VL) structure has barely been investigated. More challenging but worthwhile, we introduce a new task that targets on inducing such a joint VL structure in an unsupervised manner. Our goal is to bridge the visual scene graphs and linguistic dependency trees seamlessly. Due to the lack of VL structural data, we start by building a new dataset VLParse. Rather than using labor-intensive labeling from scratch, we propose an automatic alignment procedure to produce coarse structures followed by human refinement to produce high-quality ones. Moreover, we benchmark our dataset by proposing a contrastive learning (CL)-based framework VLGAE, short for Vision-Language Graph Autoencoder. Our model obtains superior performance on two derived tasks, i.e., language grammar induction and VL phrase grounding. Ablations show the effectiveness of both visual cues and dependency relationships on fine-grained VL structure construction.


翻译:了解现实的视觉图像和语言描述是一项基本任务。 以往的工程通过为视觉场景(如景图)和自然语言(如依赖树)单独建立等级结构,显示了令人信服的全面成果。 但是,如何构建共同视觉语言(VL)结构的问题几乎没有调查。 更具挑战性但值得的是, 我们引入一项新的任务, 目标是以不受监督的方式引导这样一个联合VLL结构。 我们的目标是将视觉场景图和语言依赖性树无缝地连接起来。 由于缺乏 VL结构数据, 我们开始建立一个新的数据集VLParse。 我们建议采用自动调整程序, 生产粗糙的结构, 并随后进行人类完善, 以产生高质量的结构。 此外, 我们用一个对比性学习( CLLGAE) 框架来衡量我们的数据集, 这是VLGAE的简称。 我们的模型在两项衍生任务上取得了优异性性表现, 即语言缩略图感和VL 缩略图 — 地面结构。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2022年1月3日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员