Robotic manipulators are essential for future autonomous systems, yet limited trust in their autonomy has confined them to rigid, task-specific systems. The intricate configuration space of manipulators, coupled with the challenges of obstacle avoidance and constraint satisfaction, often makes motion planning the bottleneck for achieving reliable and adaptable autonomy. Recently, a class of constant-time motion planners (CTMP) was introduced. These planners employ a preprocessing phase to compute data structures that enable online planning provably guarantee the ability to generate motion plans, potentially sub-optimal, within a user defined time bound. This framework has been demonstrated to be effective in a number of time-critical tasks. However, robotic systems often have more time allotted for planning than the online portion of CTMP requires, time that can be used to improve the solution. To this end, we propose an anytime refinement approach that works in combination with CTMP algorithms. Our proposed framework, as it operates as a constant time algorithm, rapidly generates an initial solution within a user-defined time threshold. Furthermore, functioning as an anytime algorithm, it iteratively refines the solution's quality within the allocated time budget. This enables our approach to strike a balance between guaranteed fast plan generation and the pursuit of optimization over time. We support our approach by elucidating its analytical properties, showing the convergence of the anytime component towards optimal solutions. Additionally, we provide empirical validation through simulation and real-world demonstrations on a 6 degree-of-freedom robot manipulator, applied to an assembly domain.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员