Fair clustering aims to divide data into distinct clusters while preventing sensitive attributes (\textit{e.g.}, gender, race, RNA sequencing technique) from dominating the clustering. Although a number of works have been conducted and achieved huge success recently, most of them are heuristical, and there lacks a unified theory for algorithm design. In this work, we fill this blank by developing a mutual information theory for deep fair clustering and accordingly designing a novel algorithm, dubbed FCMI. In brief, through maximizing and minimizing mutual information, FCMI is designed to achieve four characteristics highly expected by deep fair clustering, \textit{i.e.}, compact, balanced, and fair clusters, as well as informative features. Besides the contributions to theory and algorithm, another contribution of this work is proposing a novel fair clustering metric built upon information theory as well. Unlike existing evaluation metrics, our metric measures the clustering quality and fairness as a whole instead of separate manner. To verify the effectiveness of the proposed FCMI, we conduct experiments on six benchmarks including a single-cell RNA-seq atlas compared with 11 state-of-the-art methods in terms of five metrics. The code could be accessed from \url{ https://pengxi.me}.


翻译:公平聚类旨在将数据分成不同的簇,同时防止敏感属性(例如性别、种族、RNA测序技术)在聚类中占主导地位。尽管最近进行了许多工作并取得了巨大成功,但大部分使用的方法都是启发式的,缺乏关于算法设计的统一理论。在这项工作中,我们通过发展深度公平聚类的互信息理论,并相应地设计一种新算法,称为FCMI,填补了这一空白。简要来说,通过最大化和最小化互信息,FCMI旨在实现深度公平聚类高度期望的四个特征——紧凑、平衡、公平的聚类以及信息量大的特征。除了对理论和算法的贡献外,本工作的另一个贡献是提出了一种建立在信息论上的新颖的公平聚类度量方法。与现有的评估指标不同,我们的度量方法将聚类质量和公平性作为一个整体来衡量,而非分开考虑。为了验证所提出的FCMI的效果,我们在包括单细胞RNA测序图谱在内的六个基准数据集上进行实验,并在五个指标上与11种最先进的方法进行比较。代码可以从 \url{https://pengxi.me} 获得。

0
下载
关闭预览

相关内容

互信息(Mutual Information)是信息论里一种有用的信息度量,它可以看成是一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不肯定性.
【NAACL2022】自然语言处理的对比数据与学习
专知会员服务
45+阅读 · 2022年7月10日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
77+阅读 · 2022年4月3日
【WSDM2022】基于约束聚类学习离散表示的高效密集检索
专知会员服务
26+阅读 · 2021年11月16日
WSDM2022推荐算法部分论文整理(附直播课程)
机器学习与推荐算法
0+阅读 · 2022年7月21日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
12+阅读 · 2021年10月22日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
【NAACL2022】自然语言处理的对比数据与学习
专知会员服务
45+阅读 · 2022年7月10日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
77+阅读 · 2022年4月3日
【WSDM2022】基于约束聚类学习离散表示的高效密集检索
专知会员服务
26+阅读 · 2021年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员