Recently, self-normalizing neural networks (SNNs) have been proposed with the intention to avoid batch or weight normalization. The key step in SNNs is to properly scale the exponential linear unit (referred to as SELU) to inherently incorporate normalization based on central limit theory. SELU is a monotonically increasing function, where it has an approximately constant negative output for large negative input. In this work, we propose a new activation function to break the monotonicity property of SELU while still preserving the self-normalizing property. Differently from SELU, the new function introduces a bump-shaped function in the region of negative input by regularizing a linear function with a scaled exponential function, which is referred to as a scaled exponentially-regularized linear unit (SERLU). The bump-shaped function has approximately zero response to large negative input while being able to push the output of SERLU towards zero mean statistically. To effectively combat over-fitting, we develop a so-called shift-dropout for SERLU, which includes standard dropout as a special case. Experimental results on MNIST, CIFAR10 and CIFAR100 show that SERLU-based neural networks provide consistently promising results in comparison to other 5 activation functions including ELU, SELU, Swish, Leakly ReLU and ReLU.


翻译:最近,提出了旨在避免批量或重量正常化的自我调节神经网络(SNN),在SNN中,关键步骤是适当缩放指数线性单位(称为SELU),以便根据中央限值理论内在地纳入正常化。SELU是一个单质增加功能,它对于大量负输入具有大约不变的负输出。在这项工作中,我们提议一个新的激活功能,打破SELU的单质特性,同时仍然保留自我调节的财产。不同于SELU,新功能在区域引入了一个负输入的复变功能,即通过一个缩放指数函数使一个线性函数(称为SELU)正规化,这被称为一个缩放的指数性功能(SERLU)。SELU是一个超常的单形功能,它对于大量负输入的反应大约是零,同时能够将SERLU的输出推向零平均值。为了有效地消除过度调节,我们为SERLU开发了所谓的转换式退出,其中包括标准退出的特殊案例。MIT的实验结果、CIFAR10和CIFAR不断的实验结果,包括REL。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
14+阅读 · 2019年10月15日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
4+阅读 · 2015年8月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员