In this short note, we present an extension of long short-term memory (LSTM) neural networks to using a depth gate to connect memory cells of adjacent layers. Doing so introduces a linear dependence between lower and upper layer recurrent units. Importantly, the linear dependence is gated through a gating function, which we call depth gate. This gate is a function of the lower layer memory cell, the input to and the past memory cell of this layer. We conducted experiments and verified that this new architecture of LSTMs was able to improve machine translation and language modeling performances.
翻译:在此简短的注释中, 我们展示了长短期内存神经网络的延伸, 以使用深门连接相邻层的内存细胞。 这样做在下层和上层的经常单元之间引入线性依赖性。 重要的是, 线性依赖性会通过带宽功能来锁定, 我们称之为深门 。 这个门是下层内存单元格、 输入到该层的过去内存单元格的函数 。 我们进行了实验, 并验证了 LSTMS 的这一新结构能够改进机器翻译和语言建模性能 。