Recommender systems usually rely on observed user interaction data to build personalized recommendation models, assuming that the observed data reflect user interest. However, user interacting with an item may also due to conformity, the need to follow popular items. Most previous studies neglect user's conformity and entangle interest with it, which may cause the recommender systems fail to provide satisfying results. Therefore, from the cause-effect view, disentangling these interaction causes is a crucial issue. It also contributes to OOD problems, where training and test data are out-of-distribution. Nevertheless, it is quite challenging as we lack the signal to differentiate interest and conformity. The data sparsity of pure cause and the items' long-tail problem hinder disentangled causal embedding. In this paper, we propose DCCL, a framework that adopts contrastive learning to disentangle these two causes by sample augmentation for interest and conformity respectively. Futhermore, DCCL is model-agnostic, which can be easily deployed in any industrial online system. Extensive experiments are conducted over two real-world datasets and DCCL outperforms state-of-the-art baselines on top of various backbone models in various OOD environments. We also demonstrate the performance improvements by online A/B testing on Kuaishou, a billion-user scale short-video recommender system.


翻译:建议者系统通常依靠观察到的用户互动数据来建立个性化建议模型,假设观察到的数据反映用户的兴趣。然而,用户与某个项目互动也可能是因为符合标准,需要跟踪受欢迎项目。大多数先前的研究忽视了用户的合规性和与该系统密切相关的兴趣,这可能导致推荐者系统无法提供令人满意的结果。因此,从因果关系的观点来看,分离这些互动原因是一个关键问题。这也促成了OOOD问题,因为培训和测试数据是无法分配的。然而,由于我们缺乏区分兴趣和一致性的信号,它具有相当大的挑战性。纯粹原因的数据的广度和项目的长期问题阻碍了分解的因果关系嵌入。在本文件中,我们建议DCCL是一个框架,采用对比性学习来消除这两个原因,分别通过抽样增加兴趣和兼容性来消除这两个原因。Fothermore,DCCL是一个示范性-不可知性,可以在任何工业在线系统中轻松地部署这些数据。尽管我们缺乏区分兴趣和一致性的信号,但是它还是具有相当大的挑战性。纯粹原因和长尾端问题的数据库问题妨碍了分解的因果关系。在本文件中,我们还在各种主干线测试模型上展示了10亿级的在线测试。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年3月30日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员