Analog Compute-in-Memory (CiM) accelerators use analog-digital converters (ADCs) to read the analog values that they compute. ADCs can consume significant energy and area, so architecture-level ADC decisions such as ADC resolution or number of ADCs can significantly impact overall CiM accelerator energy and area. Therefore, modeling how architecture-level decisions affect ADC energy and area is critical for performing architecture-level design space exploration of CiM accelerators. This work presents an open-source architecture-level model to estimate ADC energy and area. To enable fast design space exploration, the model uses only architecture-level attributes while abstracting circuit-level details. Our model enables researchers to quickly and easily model key architecture-level tradeoffs in accelerators that use ADCs.
翻译:暂无翻译