Recently, generative models for 3D objects are gaining much popularity in VR and augmented reality applications. Training such models using standard 3D representations, like voxels or point clouds, is challenging and requires complex tools for proper color rendering. In order to overcome this limitation, Neural Radiance Fields (NeRFs) offer a state-of-the-art quality in synthesizing novel views of complex 3D scenes from a small subset of 2D images. In the paper, we propose a generative model called HyperNeRFGAN, which uses hypernetworks paradigm to produce 3D objects represented by NeRF. Our GAN architecture leverages a hypernetwork paradigm to transfer gaussian noise into weights of NeRF model. The model is further used to render 2D novel views, and a classical 2D discriminator is utilized for training the entire GAN-based structure. Our architecture produces 2D images, but we use 3D-aware NeRF representation, which forces the model to produce correct 3D objects. The advantage of the model over existing approaches is that it produces a dedicated NeRF representation for the object without sharing some global parameters of the rendering component. We show the superiority of our approach compared to reference baselines on three challenging datasets from various domains.
翻译:最近,3D对象的基因模型在VR中越来越受欢迎,并扩大了现实应用。使用标准 3D 表示法(如 voxels 或点云)培训这种模型具有挑战性,需要复杂的工具来进行适当的色化。为了克服这一局限性,神经辐射场(NeRFs)提供了一种最先进的质量,将2D图象中的一小部分复杂的3D场景的新观点综合起来。在文件中,我们提议了一个称为HiperNERFGAN 的基因模型,它使用超级网络模型来生产NERF所代表的3D对象。我们GAN的建筑利用超网络模型将毛利噪音转换成NERF模型的重量。这个模型进一步用于提供2D新观点,并使用经典的 2D 歧视器来培训整个GAN 结构。我们的建筑结构产生了2D 图像,但我们使用3D- awre NERF 表示法,它迫使模型产生正确的3D 对象。这个模型的优势在于它为该物体制作专门的 NERF 表示法,而没有分享全球范围上某些挑战性标准。我们的数据模型。