This paper proposes a novel approach for rendering a pre-trained Neural Radiance Field (NeRF) in real-time on resource-constrained devices. We introduce Re-ReND, a method enabling Real-time Rendering of NeRFs across Devices. Re-ReND is designed to achieve real-time performance by converting the NeRF into a representation that can be efficiently processed by standard graphics pipelines. The proposed method distills the NeRF by extracting the learned density into a mesh, while the learned color information is factorized into a set of matrices that represent the scene's light field. Factorization implies the field is queried via inexpensive MLP-free matrix multiplications, while using a light field allows rendering a pixel by querying the field a single time-as opposed to hundreds of queries when employing a radiance field. Since the proposed representation can be implemented using a fragment shader, it can be directly integrated with standard rasterization frameworks. Our flexible implementation can render a NeRF in real-time with low memory requirements and on a wide range of resource-constrained devices, including mobiles and AR/VR headsets. Notably, we find that Re-ReND can achieve over a 2.6-fold increase in rendering speed versus the state-of-the-art without perceptible losses in quality.
翻译:本文提出了在资源限制装置上实时进行预先培训的神经光度场( NERF) 的新做法。 我们引入了Re- ReND, 这是一种能够实时在设备之间对 NERF 进行实时调试的方法。 Re- ReND 旨在通过将 NERF 转换成一个可以通过标准图形管道高效处理的表示器实现实时性能。 拟议的方法通过将学习过的密度提取成网状将 NERF 蒸馏成一个网状体, 而所学的彩色信息则被纳入代表现场光场的一组矩阵中。 保质化意味着通过廉价的 MLP 免费矩阵乘法来对字段进行质询, 而使用光字段可以让对字段进行单一的时间查询,而不是在使用光度场时进行数百次查询,从而实现实时性能效果。 由于可以使用碎片遮光器实施拟议的表达法, 因此可以直接与标准光谱化框架结合。 我们的灵活实施可以使NRF在实时生成低存储要求, 并且使用广泛的资源限制装置, 包括移动和AR- RED- Redeflev 等质量损失, 。</s>