Thanks to the ability of providing an immersive and interactive experience, the uptake of 360 degree image content has been rapidly growing in consumer and industrial applications. Compared to planar 2D images, saliency prediction for 360 degree images is more challenging due to their high resolutions and spherical viewing ranges. Currently, most high-performance saliency prediction models for omnidirectional images (ODIs) rely on deeper or broader convolutional neural networks (CNNs), which benefit from CNNs' superior feature representation capabilities while suffering from their high computational costs. In this paper, inspired by the human visual cognitive process, i.e., human being's perception of a visual scene is always accomplished by multiple stages of analysis, we propose a novel multi-stage recurrent generative adversarial networks for ODIs dubbed MRGAN360, to predict the saliency maps stage by stage. At each stage, the prediction model takes as input the original image and the output of the previous stage and outputs a more accurate saliency map. We employ a recurrent neural network among adjacent prediction stages to model their correlations, and exploit a discriminator at the end of each stage to supervise the output saliency map. In addition, we share the weights among all the stages to obtain a lightweight architecture that is computationally cheap. Extensive experiments are conducted to demonstrate that our proposed model outperforms the state-of-the-art model in terms of both prediction accuracy and model size.


翻译:与平面 2D 图像相比,360 度图像的显著预测由于其分辨率高和球形观测范围广而更具有挑战性。目前,全向图像的多数高性能显著预测模型依赖于更深或更广的共生神经网络,这些网络得益于CNN的优异特征表现能力,同时受到高计算成本的影响。在本文中,在人类视觉认知过程的启发下,人类对视觉场景的感知总是通过多个分析阶段完成。我们提议为ODIs dubbed MRGAN360 建立一个新的多阶段重复基因对抗网络,以便按阶段预测突出的地图阶段。在每个阶段,预测模型将前阶段的原始图像和模型产出和产出作为更准确的突出度图。我们利用一个经常性的神经网络,在临近的预测阶段中,即人类对视觉场景的感知过程总是通过多个分析阶段完成。我们提议为ODIs dubed MRGAN360 提供一个新的多阶段重复的基因对抗网络,在每一个阶段里程的模型中,在每一个阶段都利用一个测试阶段的精度中,我们所选的精度的模型的精度 。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月5日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员