Noise synthesis is a challenging low-level vision task aiming to generate realistic noise given a clean image along with the camera settings. To this end, we propose an effective generative model which utilizes clean features as guidance followed by noise injections into the network. Specifically, our generator follows a UNet-like structure with skip connections but without downsampling and upsampling layers. Firstly, we extract deep features from a clean image as the guidance and concatenate a Gaussian noise map to the transition point between the encoder and decoder as the noise source. Secondly, we propose noise synthesis blocks in the decoder in each of which we inject Gaussian noise to model the noise characteristics. Thirdly, we propose to utilize an additional Style Loss and demonstrate that this allows better noise characteristics supervision in the generator. Through a number of new experiments, we evaluate the temporal variance and the spatial correlation of the generated noise which we hope can provide meaningful insights for future works. Finally, we show that our proposed approach outperforms existing methods for synthesizing camera noise.


翻译:噪声合成是一个挑战性的低级别视觉任务,旨在根据相机设置和一个干净的图像生成逼真的噪声。为此,我们提出了一种有效的生成模型,该模型利用干净的特征作为指导,在网络中注入噪声。具体来说,我们的生成器遵循类似UNet的结构,具有跳跃连接,但没有下采样和上采样层。首先,我们从干净的图像中提取深度特征作为指导,并将高斯噪声映射连接到编码器和解码器之间的过渡点作为噪声源。其次,我们在解码器中提出噪声合成块,在每个块中注入高斯噪声以建模噪声特性。第三,我们建议使用额外的Style Loss,并证明这可以在生成器中提供更好的噪声特性监督。通过一些新的实验,我们评估了生成的噪声的时间方差和空间相关性,希望这可以为未来的工作提供有意义的见解。最后,我们证明了我们提出的方法胜过现有的合成相机噪声方法。

0
下载
关闭预览

相关内容

【NeurIPS 2022】扩散模型的深度平衡方法
专知会员服务
39+阅读 · 2022年11月5日
专知会员服务
15+阅读 · 2021年5月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【NeurIPS 2022】扩散模型的深度平衡方法
专知会员服务
39+阅读 · 2022年11月5日
专知会员服务
15+阅读 · 2021年5月13日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员