Aiming at ontology-based data access to temporal data, we design two-dimensional temporal ontology and query languages by combining logics from the (extended) DL-Lite family with linear temporal logic LTL over discrete time (Z,<). Our main concern is first-order rewritability of ontology-mediated queries (OMQs) that consist of a 2D ontology and a positive temporal instance query. Our target languages for FO-rewritings are two-sorted FO(<) - first-order logic with sorts for time instants ordered by the built-in precedence relation < and for the domain of individuals - its extension FOE with the standard congruence predicates t \equiv 0 mod n, for any fixed n > 1, and FO(RPR) that admits relational primitive recursion. In terms of circuit complexity, FOE- and FO(RPR)-rewritability guarantee answering OMQs in uniform AC0 and NC1, respectively. We proceed in three steps. First, we define a hierarchy of 2D DL-Lite/LTL ontology languages and investigate the FO-rewritability of OMQs with atomic queries by constructing projections onto 1D LTL OMQs and employing recent results on the FO-rewritability of propositional LTL OMQs. As the projections involve deciding consistency of ontologies and data, we also consider the consistency problem for our languages. While the undecidability of consistency for 2D ontology languages with expressive Boolean role inclusions might be expected, we also show that, rather surprisingly, the restriction to Krom and Horn role inclusions leads to decidability (and ExpSpace-completeness), even if one admits full Booleans on concepts. As a final step, we lift some of the rewritability results for atomic OMQs to OMQs with expressive positive temporal instance queries. The lifting results are based on an in-depth study of the canonical models and only concern Horn ontologies.


翻译:以基于科学的数据为目的获取时间数据,我们设计了二维时间信息学和查询语言,将(扩展的)DL-Lite家族的逻辑与离散时间(Z, <)的线性时间逻辑LTLL(T)相结合。我们的主要关切是,由2D肿瘤和积极的时间实例查询组成的本科学中介查询(OMQs)的一阶重写性。我们FO-refrict的目标语言是双分解 FO( < ) - 一阶逻辑,由(扩展的)DL-Lite家族的立体关系和(个人域)的直线性-直线性直线性逻辑结合逻辑(LT)的逻辑和线性时间逻辑(LL)的逻辑。从电路的复杂性、FOE-和FO(RPR)的易变异性(FO-LLT)的立体(OFOR-LLT)的直线性、OFO-LLLL的直径预测(OLL)的直径直径直径直径直径直径直径直径直径直径直径(O-LL)的直径、O-LLLLL)的直径直径直径直径直径直径直判的直判(O-LLL)的直判的直径直径直判)的直判(O)的直径直径直径直径直判)的直判(O)的直判)的直判)的直判(O。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月5日
Arxiv
0+阅读 · 2022年9月3日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员