We consider preference disaggregation in the context of multiple criteria sorting. The value function parameters and thresholds separating the classes are inferred from the Decision Maker's (DM's) assignment examples. Given the multiplicity of sorting models compatible with indirect preferences, selecting a single, representative one can be conducted differently. We review several procedures for this purpose, aiming to identify the most discriminant, average, central, benevolent, aggressive, parsimonious, or robust models. Also, we present three novel procedures that implement the robust assignment rule in practice. They exploit stochastic acceptabilities and maximize the support given to the resulting assignments by all feasible sorting models. The performance of sixteen procedures is verified on problem instances with different complexities. The results of an experimental study indicate the most efficient procedure in terms of classification accuracy, reproducing the DM's model, and delivering the most robust assignments. These include approaches identifying differently interpreted centers of the feasible polyhedron and robust methods introduced in this paper. Moreover, we discuss how the performance of all procedures is affected by different numbers of classes, criteria, characteristic points, and reference assignments. Finally, we illustrate the use of all approaches in a study concerning the assessment of the green performance of European cities.


翻译:我们考虑在多种标准分类的背景下对优惠进行分类。从决策人(DM's)的派任示例中推断出价值功能参数和分级阈值。鉴于与间接偏好相容的分类模式的多样性,可以不同地选择一个单一的代表性模式。我们为此审查了若干程序,目的是确定最不相干的、平均的、中央的、仁慈的、积极的、攻击性的、尖锐的或强有力的模式。此外,我们还介绍了在实践中执行稳健的派任规则的三个新程序。它们利用了随机的可接受性,并通过所有可行的选任模式最大限度地支持由此而来的任务分配。16项程序的绩效在复杂程度不同的问题案例中得到核实。一项实验研究的结果表明,在分类准确性、复制DM的模型和交付最有力的派任方面,最有效率的程序。这些方法包括确定各种解释不同的可行多面和稳健方法的中心。此外,我们讨论了所有程序的绩效如何受到不同种类、标准、特征和参照性指派给不同数目的欧洲城市带来何种影响。最后,我们要说明在一项绿色城市评估中采用的所有方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月13日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员