Several robot manipulation tasks are extremely sensitive to variations of the physical properties of the manipulated objects. One such task is manipulating objects by using gravity or arm accelerations, increasing the importance of mass, center of mass, and friction information. We present SwingBot, a robot that is able to learn the physical features of a held object through tactile exploration. Two exploration actions (tilting and shaking) provide the tactile information used to create a physical feature embedding space. With this embedding, SwingBot is able to predict the swing angle achieved by a robot performing dynamic swing-up manipulations on a previously unseen object. Using these predictions, it is able to search for the optimal control parameters for a desired swing-up angle. We show that with the learned physical features our end-to-end self-supervised learning pipeline is able to substantially improve the accuracy of swinging up unseen objects. We also show that objects with similar dynamics are closer to each other on the embedding space and that the embedding can be disentangled into values of specific physical properties.
翻译:若干机器人操作任务对被操纵物体物理特性的变化极为敏感。 其中一项任务就是使用重力或臂加速来操纵物体,提高质量、质量中心和摩擦信息的重要性。 我们展示了斯温博特,这是一个能够通过触动探索来学习被控物体物理特征的机器人。 两个探索行动( 触动和摇晃) 提供了用来创建物理特征嵌入空间的触动信息。 通过嵌入, 斯温博特能够预测机器人对先前看不见的物体进行动态摆动操纵所达到的摆动角度。 利用这些预测, 它能够为理想的摆动角度寻找最佳控制参数。 我们显示,有了所学的物理特征, 我们的端到端的自我监督的学习管道能够大大提高无源物体的摆动精度。 我们还显示,在嵌入空间上具有类似动态的物体相互接近, 嵌入可以与特定物理特性的值分离。