Detecting hidden geometrical structures from surface measurements under electromagnetic, acoustic, or mechanical loading is the goal of noninvasive imaging techniques in medical and industrial applications. Solving the inverse problem can be challenging due to the unknown topology and geometry, the sparsity of the data, and the complexity of the physical laws. Physics-informed neural networks (PINNs) have shown promise as a simple-yet-powerful tool for problem inversion, but they have yet to be applied to general problems with a priori unknown topology. Here, we introduce a topology optimization framework based on PINNs that solves geometry detection problems without prior knowledge of the number or types of shapes. We allow for arbitrary solution topology by representing the geometry using a material density field that approaches binary values thanks to a novel eikonal regularization. We validate our framework by detecting the number, locations, and shapes of hidden voids and inclusions in linear and nonlinear elastic bodies using measurements of outer surface displacement from a single mechanical loading experiment. Our methodology opens a pathway for PINNs to solve various engineering problems targeting geometry optimization.
翻译:在电磁,声学或机械载荷下通过表面测量检测隐藏几何结构是医疗和工业应用中非侵入成像技术的目标。由于未知的拓扑和几何形状,数据的稀疏性以及物理规律的复杂性,解决反向问题可能具有挑战性。物理信息神经网络(PINN)已经显示出作为一个简单而强大的反演工具的潜力,但是它们尚未应用于先验未知拓扑的一般问题。在此,我们介绍了一种基于 PINN 的拓扑优化框架,该框架在不需要先验拓扑的情况下解决几何检测问题。我们通过利用一种新的埃克纳尔正则化方法,将实现任意解拓扑结构的几何表示为材料密度场,这种方法逐渐趋近于二进制数值。我们通过使用单个机械加载实验的外表面位移测量来检测线性和非线性弹性体中隐藏的虚空和包含物的数量,位置和形状,并验证了我们的框架。我们的方法为 PINN 解决各种工程问题开辟了一条途径,旨在以几何优化为目标。