In this paper, we treat estimation and prediction problems where negative multinomial variables are observed and in particular consider unbalanced settings. First, the problem of estimating multiple negative multinomial parameter vectors under the standardized squared error loss is treated and a new empirical Bayes estimator which dominates the UMVU estimator under suitable conditions is derived. Second, we consider estimation of the joint predictive density of several multinomial tables under the Kullback-Leibler divergence and obtain a sufficient condition under which the Bayesian predictive density with respect to a hierarchical shrinkage prior dominates the Bayesian predictive density with respect to the Jeffreys prior. Third, our proposed Bayesian estimator and predictive density give risk improvements in simulations. Finally, the problem of estimating the joint predictive density of negative multinomial variables is discussed.


翻译:在本文中,我们处理观测负多数值变量的估算和预测问题,特别是考虑到不平衡的设置。首先,处理在标准平方误差损失下估算多负多数值参数矢量的问题,并计算出在适当条件下主导UMVU估计器的新的经验性贝亚斯估计器。第二,我们考虑在Kullback-Leebler差异下估算若干多数值表的联合预测密度,并获得足够条件,使Bayesian预测密度相对于先前的Jeffers预测密度主导Bayesian预测密度。第三,我们提议的Bayesian估计器和预测密度在模拟中带来风险的改善。最后,我们讨论了估算负多数值变量联合预测密度的问题。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月21日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员