In sparse estimation, such as fused lasso and convex clustering, we apply either the proximal gradient method or the alternating direction method of multipliers (ADMM) to solve the problem. It takes time to include matrix division in the former case, while an efficient method such as FISTA (fast iterative shrinkage-thresholding algorithm) has been developed in the latter case. This paper proposes a general method for converting the ADMM solution to the proximal gradient method, assuming that assumption that the derivative of the objective function is Lipschitz continuous. Then, we apply it to sparse estimation problems, such as sparse convex clustering and trend filtering, and we show by numerical experiments that we can obtain a significant improvement in terms of efficiency.


翻译:在少许估计中,例如结合拉索和混凝土组群,我们要么采用近似梯度法,要么采用乘数交替方向法(ADMM)来解决问题。在前一种情况中,需要时间将矩阵划分包括在内,而在后一种情况中,已经开发出一种有效的方法,如FISTA(快速迭代缩影-超速算法),本文提出了一种将ADMM办法转换为近似梯度法的一般方法,假设目标函数的衍生物是连续的。然后,我们将其应用于稀少的估计问题,如稀少的 convex集群和趋势过滤,我们通过数字实验表明,我们可以大大提高效率。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
84+阅读 · 2020年12月5日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2022年1月22日
Smoothed Model-Assisted Small Area Estimation
Arxiv
0+阅读 · 2022年1月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员