We study Benamou's domain decomposition algorithm for optimal transport in the entropy regularized setting. The key observation is that the regularized variant converges to the globally optimal solution under very mild assumptions. We prove linear convergence of the algorithm with respect to the Kullback--Leibler divergence and illustrate the (potentially very slow) rates with numerical examples. On problems with sufficient geometric structure (such as Wasserstein distances between images) we expect much faster convergence. We then discuss important aspects of a computationally efficient implementation, such as adaptive sparsity, a coarse-to-fine scheme and parallelization, paving the way to numerically solving large-scale optimal transport problems. We demonstrate efficient numerical performance for computing the Wasserstein-2 distance between 2D images and observe that, even without parallelization, domain decomposition compares favorably to applying a single efficient implementation of the Sinkhorn algorithm in terms of runtime, memory and solution quality.


翻译:我们研究贝纳穆的域分解算法,以优化在对流正常环境下的运输。 关键观察是, 常规变方在非常温和的假设下会与全球最佳解决办法相融合。 我们证明算法在Kullback- Leibertr差异方面的线性趋同, 并以数字例子来说明( 可能非常慢的) 率。 关于足够的几何结构( 如瓦塞斯坦图像之间的距离) 的问题, 我们期望更快的趋同。 然后我们讨论计算高效实施的重要方面, 比如适应性宽度、粗略到软化的计划和平行化, 为从数字上解决大规模最佳运输问题铺平道路。 我们展示了计算2D图像之间瓦塞斯坦-2距离的高效数字性表现, 并观察到即使没有平行化, 领域分解也比在运行时间、 记忆和解决方案质量方面对辛克霍恩算法的单一有效实施要好得多。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
48+阅读 · 2021年10月26日
专知会员服务
42+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Dimension-Free Empirical Entropy Estimation
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月23日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员