Online footstep planning is essential for bipedal walking robots, allowing them to walk in the presence of disturbances and sensory noise. Most of the literature on the topic has focused on optimizing the footstep placement while keeping the step timing constant. In this work, we introduce a footstep planner capable of optimizing footstep placement and step time online. The proposed planner, consisting of an Interior Point Optimizer (IPOPT) and an optimizer based on Augmented Lagrangian (AL) method with analytical gradient descent, solves the full dynamics of the Linear Inverted Pendulum (LIP) model in real time to optimize for footstep location as well as step timing at the rate of 200~Hz. We show that such asynchronous real-time optimization with the AL method (ARTO-AL) provides the required robustness and speed for successful online footstep planning. Furthermore, ARTO-AL can be extended to plan footsteps in 3D, allowing terrain-aware footstep planning on uneven terrains. Compared to an algorithm with no footstep time adaptation, our proposed ARTO-AL demonstrates increased stability in simulated walking experiments as it can resist pushes on flat ground and on a $10^{\circ}$ ramp up to 120 N and 100 N respectively. For the video, see https://youtu.be/ABdnvPqCUu4. For code, see https://github.com/WangKeAlchemist/ARTO-AL/tree/master.
翻译:在线脚步规划对于双足行走机器人至关重要,允许他们在出现扰动和感官噪音的情况下行走。关于这个专题的大多数文献都侧重于优化脚步定位,同时保持步步时间不变。在这项工作中,我们引入了一个足步规划器,能够优化脚步定位和在线足步时间。拟议规划器由内地点优化优化器(IPOPT)和基于分析梯度下坡的拉格朗加(AL)增强方法的优化器组成,能够实时解决线性倒转的Pentulum(LIP)模型的全部动态,以便优化脚步位置和脚步时间,同时以200~Hz的速度保持步步定时间不变。我们展示了使用AL方法(ARTO-AL)的无节奏实时优化,为成功在线脚步规划提供了所需的稳健和速度。此外,ARTO-AL可以扩展为3D的计划脚步迹,允许在不均匀的地形上进行地形规划。比较算算法,我们提议的ARTO-W$AL可以优化脚步位位置位置位置位置位置位置位置位置位置,我们提议的ARTO-AL在100~轨道上都展示稳定。