Contemporary image rescaling aims at embedding a high-resolution (HR) image into a low-resolution (LR) thumbnail image that contains embedded information for HR image reconstruction. Unlike traditional image super-resolution, this enables high-fidelity HR image restoration faithful to the original one, given the embedded information in the LR thumbnail. However, state-of-the-art image rescaling methods do not optimize the LR image file size for efficient sharing and fall short of real-time performance for ultra-high-resolution (e.g., 6K) image reconstruction. To address these two challenges, we propose a novel framework (HyperThumbnail) for real-time 6K rate-distortion-aware image rescaling. Our framework first embeds an HR image into a JPEG LR thumbnail by an encoder with our proposed quantization prediction module, which minimizes the file size of the embedding LR JPEG thumbnail while maximizing HR reconstruction quality. Then, an efficient frequency-aware decoder reconstructs a high-fidelity HR image from the LR one in real time. Extensive experiments demonstrate that our framework outperforms previous image rescaling baselines in rate-distortion performance and can perform 6K image reconstruction in real time.


翻译:现代图片剪裁旨在将高分辨率(HR)图片嵌入低分辨率(LR)缩略图中,缩略图包含嵌入的HR图像重建所需信息。与传统的超分辨率技术不同,这种方法实现了高保真的HR图像重建以尽可能忠实于原始图像,只需在LR缩略图中嵌入所需信息。然而,现有的图片剪裁方法无法实现LR图像文件大小的最优化以实现高效共享,并且对于超高分辨率(例如6K)图像重建的实时性能不足。为了解决这两个挑战,我们提出了一种新的框架(HyperThumbnail),可以实现实时6K速率失真感知的图像剪裁。我们的框架首先通过带有我们的预测量化模块的编码器将HR图像嵌入JPEG LR缩略图中,该模块最小化了嵌入LR JPEG缩略图的文件大小,同时最大化了HR重建质量。然后,一种高效的频率感知解码器能够从LR图像中实时重建出高保真的HR图像。广泛的实验表明,我们的框架在速率失真性能方面优于之前的图像剪裁基线,并且能够实时执行6K图像重建。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年8月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
【论文笔记】Graph U-Nets
专知
80+阅读 · 2019年11月25日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关VIP内容
专知会员服务
21+阅读 · 2021年8月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
相关资讯
【论文笔记】Graph U-Nets
专知
80+阅读 · 2019年11月25日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员