We study the computational complexity of computing allocations that are both fair and maximize the utilitarian social welfare, i.e., the sum of agents' utilities. We focus on two tractable fairness concepts: envy-freeness up to one item (EF1) and proportionality up to one item (PROP1). In particular, we consider the following two computational problems: (1) Among the utilitarian-maximal allocations, decide whether there exists one that is also fair according to either EF1 or PROP1; (2) among the fair allocations, compute one that maximizes the utilitarian welfare. We show that both problems are strongly NP-hard when the number of agents is variable, and remain NP-hard for a fixed number of agents greater than two. For the special case of two agents, we find that problem (1) is polynomial-time solvable, while problem (2) remains NP-hard. Finally, with a fixed number of agents, we design pseudopolynomial-time algorithms for both problems.
翻译:我们研究了计算分配的计算复杂性,这些分配既公平,又尽量扩大功用社会福利,即代理商公用事业的总和。我们侧重于两个可推广的公平概念:嫉妒无欲最多一个项目(EF1)和相称性最多一个项目(PROP1)。 特别是,我们考虑了以下两个计算问题:(1) 在功利最大分配中,决定是否存在一种根据EF1或PROP1也是公平的分配;(2) 在公平分配中,计算一种使功利性福利最大化的公平分配中,我们表明,当代理商的数量变化不定时,这两个问题都非常难以解决,对于固定数量超过两个的代理商来说,这两个问题仍然难以解决。在两种代理商的特殊情况下,我们发现问题(1) 是多元时间可溶解,而问题(2) 仍然难以解决。最后,在有固定数量的代理商的情况下,我们为这两个问题设计了假极时算法。