We study fair allocation of indivisible public goods subject to cardinality (budget) constraints. In this model, we have n agents and m available public goods, and we want to select $k \leq m$ goods in a fair and efficient manner. We first establish fundamental connections between the models of private goods, public goods, and public decision making by presenting polynomial-time reductions for the popular solution concepts of maximum Nash welfare (MNW) and leximin. These mechanisms are known to provide remarkable fairness and efficiency guarantees in private goods and public decision making settings. We show that they retain these desirable properties even in the public goods case. We prove that MNW allocations provide fairness guarantees of Proportionality up to one good (Prop1), $1/n$ approximation to Round Robin Share (RRS), and the efficiency guarantee of Pareto Optimality (PO). Further, we show that the problems of finding MNW or leximin-optimal allocations are NP-hard, even in the case of constantly many agents, or binary valuations. This is in sharp contrast to the private goods setting that admits polynomial-time algorithms under binary valuations. We also design pseudo-polynomial time algorithms for computing an exact MNW or leximin-optimal allocation for the cases of (i) constantly many agents, and (ii) constantly many goods with additive valuations. We also present an O(n)-factor approximation algorithm for MNW which also satisfies RRS, Prop1, and 1/2-Prop.


翻译:我们研究的是受基本(预算)限制的不可分割的公益物的公平分配。在这个模型中,我们拥有n代理商和m 可用的公共货物,我们想以公平和高效的方式选择$k\leq mum 货物。我们首先通过提出最大纳什福利(MNW)和公共决策法等大众解决方案概念的多元时间缩减,从而建立私人货物、公共货物和公共决策模式之间的基本联系。众所周知,这些机制为私人货物和公共决策环境提供了显著的公平和效率保障。我们表明,即使在公共货物案件中,它们也保留着这些可取的属性。我们证明,MNW的分配为比例至一好(Prop1)、1/n美元接近于轮罗宾股份(RRMS)和公共决策模式之间的公平保障,以及Pareto优化(POO)的效率保障。此外,我们表明,找到MNW或LIP(LI-opin-opin-opimal) 分配办法的问题非常复杂,即使是许多代理商,或者二进估值。我们也与私人货物的设置的私人货物设置有鲜明的对比,其中也承认了IM-al-al-alimal-al IMal IMal IMal IM IM IM IM 的经常设计和IMAL IMAL 的固定(也以IMAL IMAL IM IM IMAL IM 的固定的固定的计算法进行一个硬值的固定的固定的固定的计算)。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年6月17日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
15+阅读 · 2019年10月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
0+阅读 · 2021年9月19日
VIP会员
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
Top
微信扫码咨询专知VIP会员