Training large neural networks requires distributing learning across multiple workers, where the cost of communicating gradients can be a significant bottleneck. signSGD alleviates this problem by transmitting just the sign of each minibatch stochastic gradient. We prove that it can get the best of both worlds: compressed gradients and SGD-level convergence rate. The relative $\ell_1/\ell_2$ geometry of gradients, noise and curvature informs whether signSGD or SGD is theoretically better suited to a particular problem. On the practical side we find that the momentum counterpart of signSGD is able to match the accuracy and convergence speed of Adam on deep Imagenet models. We extend our theory to the distributed setting, where the parameter server uses majority vote to aggregate gradient signs from each worker enabling 1-bit compression of worker-server communication in both directions. Using a theorem by Gauss we prove that majority vote can achieve the same reduction in variance as full precision distributed SGD. Thus, there is great promise for sign-based optimisation schemes to achieve fast communication and fast convergence. Code to reproduce experiments is to be found at https://github.com/jxbz/signSGD.


翻译:培训大型神经网络需要向多个工人分配学习,因为传递梯度的成本可能是一个很大的瓶颈。 签名SGD 能够通过发送每个迷你批次切换梯度的标记来缓解这一问题。 我们证明它可以得到两个世界的最佳信号: 压缩梯度和 SGD 水平趋同率。 相对的 $\ 1/\\\ ell_ 2 $ 2 梯度、 噪声和曲律的几何测量显示, 信号SGD 或 SGD 在理论上是否更适合特定的问题。 在实际方面, 我们发现, 信号SGD 的势头对应方能够匹配亚当在深层图像网模型上的精确度和汇合速度。 我们将我们的理论推广到分布的设置, 参数服务器使用多数票, 使每个工人能够双向对工人- 服务器通信进行1位压缩。 我们用高斯的标语证明, 多数选票在减少差异方面可以与完全精确分布的SGD 。 因此, 我们非常希望基于签名的优化选择计划能够实现快速的通信和快速趋同。 在 http可复制实验中找到 http://gimb/ D。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员