The first focus of this paper is the characterization of the spectrum and the singular values of the coefficient matrix stemming from the discretization with space-time grid for a parabolic diffusion problem and from the approximation of distributed order fractional equations. For this purpose we will use the classical GLT theory and the new concept of GLT momentary symbols. The first permits to describe the singular value or eigenvalue asymptotic distribution of the sequence of the coefficient matrices, the latter permits to derive a function, which describes the singular value or eigenvalue distribution of the matrix of the sequence, even for small matrix-sizes but under given assumptions. The note is concluded with a list of open problems, including the use of our machinery in the study of iteration matrices, especially those concerning multigrid-type techniques.
翻译:本文的第一个重点是对参数扩散问题与空间-时间网格分离产生的系数矩阵的频谱和单值的定性,以及从分布顺序分解方程近似值产生的系数矩阵的特征。为此目的,我们将使用古典GLT理论和GLT瞬时符号的新概念。首先允许描述系数矩阵序列的单值或非基因值分布,后者允许产生一个函数,该函数描述序列矩阵的单值或单值分布,即使对于小矩阵大小,但根据特定假设,该说明以一系列公开问题结束,包括在迭代矩阵研究中使用我们的机器,特别是涉及多格型技术的机器。