Objective assessment of Magnetic Resonance Imaging (MRI) scans of osteoarthritis (OA) can address the limitation of the current OA assessment. Segmentation of bone, cartilage, and joint fluid is necessary for the OA objective assessment. Most of the proposed segmentation methods are not performing instance segmentation and suffer from class imbalance problems. This study deployed Mask R-CNN instance segmentation and improved it (improved-Mask R-CNN (iMaskRCNN)) to obtain a more accurate generalized segmentation for OA-associated tissues. Training and validation of the method were performed using 500 MRI knees from the Osteoarthritis Initiative (OAI) dataset and 97 MRI scans of patients with symptomatic hip OA. Three modifications to Mask R-CNN yielded the iMaskRCNN: adding a 2nd ROIAligned block, adding an extra decoder layer to the mask-header, and connecting them by a skip connection. The results were assessed using Hausdorff distance, dice score, and coefficients of variation (CoV). The iMaskRCNN led to improved bone and cartilage segmentation compared to Mask RCNN as indicated with the increase in dice score from 95% to 98% for the femur, 95% to 97% for tibia, 71% to 80% for femoral cartilage, and 81% to 82% for tibial cartilage. For the effusion detection, dice improved with iMaskRCNN 72% versus MaskRCNN 71%. The CoV values for effusion detection between Reader1 and Mask R-CNN (0.33), Reader1 and iMaskRCNN (0.34), Reader2 and Mask R-CNN (0.22), Reader2 and iMaskRCNN (0.29) are close to CoV between two readers (0.21), indicating a high agreement between the human readers and both Mask R-CNN and iMaskRCNN. Mask R-CNN and iMaskRCNN can reliably and simultaneously extract different scale articular tissues involved in OA, forming the foundation for automated assessment of OA. The iMaskRCNN results show that the modification improved the network performance around the edges.
翻译:磁共振成像(MARI) 扫描OSTO2 NRC2 NRC2 NRC2 目标评估可以解决当前 OA评估的局限性。 OA 的骨骼、软骨和联合液分解是 OA 客观评估所必须的。 大部分拟议的分解方法不执行例分解,并且存在阶级失衡问题。 本研究安装了Mask R-CNN 分解并改进了它( iMaskRCN), 以获得与 OA 有关的组织更精确的通用分解。 使用OA 评估的OA 。 骨质、软骨质和联合液分解的OA值的500 MRI, 骨质分解的骨质分解和97 MRI。 RISK RIC 的三次修改结果是: 将R-NRC RNRC 分解成2, 将一个额外的分解层层添加到面具- NRC RNRC,并将它们连接起来。 利用HDF 的距离、 DNA评分分分解器到 IM IM IM 和 RIS IM IM 的 RB 和 RIS 的 RIS 和 RDF 和 RDF 的 RIS 显示 和 的 RB 的 和 RIS 显示 的 和 RB 和 IM IM 和 的 IM 。