The architectural advancements in deep neural networks have led to remarkable leap-forwards across a broad array of computer vision tasks. Instead of relying on human expertise, neural architecture search (NAS) has emerged as a promising avenue toward automating the design of architectures. While recent achievements in image classification have suggested opportunities, the promises of NAS have yet to be thoroughly assessed on more challenging tasks of semantic segmentation. The main challenges of applying NAS to semantic segmentation arise from two aspects: (i) high-resolution images to be processed; (ii) additional requirement of real-time inference speed (i.e., real-time semantic segmentation) for applications such as autonomous driving. To meet such challenges, we propose a surrogate-assisted multi-objective method in this paper. Through a series of customized prediction models, our method effectively transforms the original NAS task into an ordinary multi-objective optimization problem. Followed by a hierarchical pre-screening criterion for in-fill selection, our method progressively achieves a set of efficient architectures trading-off between segmentation accuracy and inference speed. Empirical evaluations on three benchmark datasets together with an application using Huawei Atlas 200 DK suggest that our method can identify architectures significantly outperforming existing state-of-the-art architectures designed both manually by human experts and automatically by other NAS methods.
翻译:深层神经网络的建筑进步导致在一系列广泛的计算机愿景任务中出现了显著的跃进。神经结构搜索(NAS)不是依靠人类专长,而是成为实现建筑设计自动化的一个充满希望的途径。虽然最近在图像分类方面的成就带来了一些机会,但对于更具有挑战性的语义分化任务,NAS的承诺尚未得到彻底评估。将NAS应用于语义分化的主要挑战来自两个方面:(一) 需要处理的高分辨率图像;(二) 对诸如自主驱动等应用的实时推断速度(即实时语义分解)提出了额外的要求。为了应对这些挑战,我们在本文件中提出了一种代孕辅助的多目标方法。通过一系列定制的预测模型,我们的方法有效地将原NAS任务转化为一个普通的多目标优化问题。随后,根据一个等级前筛选选择标准,我们的方法可以逐步实现一套高效的结构在分解准确性和误判速度之间进行交易的速度(即实时的语义分解速度),以及自动断分解速度(即实时的语义分解分解分解速度)等应用程序。为了迎接这些挑战,我们在本文中提出了一种代理辅助辅助的多目的多目标方法,我们设计了三种结构结构,通过对现有数据结构,用一种快速评估,用目前设计的方法,用亚动的方法,用三个基准,用亚动的方法确定了的方法确定了方法,用现有数据结构来确定一套数据结构结构结构,用其他的方法,用其他的方法,用亚动地标标定。