Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and NMR spectroscopy as a high-resolution structural method to resolve biological macromolecules. In a cryo-EM experiment, the microscope produces images called micrographs. Projections of the molecule of interest are embedded in the micrographs at unknown locations, and under unknown viewing directions. Standard imaging techniques first locate these projections (detection) and then reconstruct the 3-D structure from them. Unfortunately, high noise levels hinder detection. When reliable detection is rendered impossible, the standard techniques fail. This is a problem, especially for small molecules. In this paper, we pursue a radically different approach: we contend that the structure could, in principle, be reconstructed directly from the micrographs, without intermediate detection. The aim is to bring small molecules within reach for cryo-EM. To this end, we design an autocorrelation analysis technique that allows to go directly from the micrographs to the sought structures. This involves only one pass over the micrographs, allowing online, streaming processing for large experiments. We show numerical results and discuss challenges that lay ahead to turn this proof-of-concept into a complementary approach to state-of-the-art algorithms.
翻译:单粒子冷冻- 电子显微镜( cryo- EM) 最近加入了X射线晶体学和NMR光谱学,作为解决生物大型分子的一种高分辨率结构方法。 在冷冻- EM 实验中, 显微镜产生称为显微镜的图像。 有关分子的预测嵌入未知地点的显微镜中, 并处于未知的观察方向 。 标准成像技术首先定位这些预测( 检测), 然后从它们重建3D 结构 。 不幸的是, 高噪声水平阻碍检测。 当无法进行可靠检测时, 标准技术失败了。 这是一个问题, 特别是对于小分子来说。 在本文中, 我们追求一个完全不同的方法: 我们主张, 原则上, 该结构可以在没有中间检测的情况下, 直接从显微镜中重建。 目的是将小分子带进到冷冻- EM 。 为此, 我们设计一种自动关系分析技术, 能够直接从显微图到所寻求的结构。 这只涉及一次通过显微镜的通过, 允许在线、 流化过程处理到大规模实验的模型结果结果。