We present a framework to interpret signal temporal logic (STL) formulas over discrete-time stochastic processes in terms of the induced risk. Each realization of a stochastic process either satisfies or violates an STL formula. In fact, we can assign a robustness value to each realization that indicates how robustly this realization satisfies an STL formula. We then define the risk of a stochastic process not satisfying an STL formula robustly, referred to as the STL robustness risk. In our definition, we permit general classes of risk measures such as, but not limited to, the conditional value-at-risk. While in general hard to compute, we propose an approximation of the STL robustness risk. This approximation has the desirable property of being an upper bound of the STL robustness risk when the chosen risk measure is monotone, a property satisfied by most risk measures. Motivated by the interest in data-driven approaches, we present a sampling-based method for estimating the approximate STL robustness risk from data for the value-at-risk. While we consider the value-at-risk, we highlight that such sampling-based methods are viable for other risk measures.
翻译:我们提出了一个框架来解释信号时间逻辑(STL)公式,用诱导风险来解释离散时间随机过程的信号时间逻辑(STL)公式。每次实现随机过程要么满足,要么违反STL公式。事实上,我们可以为每一项实现确定一个稳健值值值,表明这种实现如何有力地满足STL公式。然后,我们界定一个不满足STL公式的随机过程的风险,称为STL稳健度风险。在我们的定义中,我们允许一般类别的风险评估措施,例如,但不限于条件值风险。我们虽然一般难以计算,但提出STL稳健性风险的近似值。当所选择的风险措施为单调时,这种近似具有STL稳健性风险上限的可取属性,因为所选择的风险措施是单调的,而大多数风险措施都满足了这一属性。受数据驱动方法的驱动,我们提出了一种基于抽样的方法,用以估计来自价值风险数据的估计大约的STL稳健性风险。我们考虑到价值风险,但我们强调这种基于取样的方法对于其他风险是可行的。