Active inference, a corollary of the free energy principle, is a formal way of describing the behavior of certain kinds of random dynamical systems that have the appearance of sentience. In this chapter, we describe how active inference combines Bayesian decision theory and optimal Bayesian design principles under a single imperative to minimize expected free energy. It is this aspect of active inference that allows for the natural emergence of information-seeking behavior. When removing prior outcomes preferences from expected free energy, active inference reduces to optimal Bayesian design, i.e., information gain maximization. Conversely, active inference reduces to Bayesian decision theory in the absence of ambiguity and relative risk, i.e., expected utility maximization. Using these limiting cases, we illustrate how behaviors differ when agents select actions that optimize expected utility, expected information gain, and expected free energy. Our T-maze simulations show optimizing expected free energy produces goal-directed information-seeking behavior while optimizing expected utility induces purely exploitive behavior and maximizing information gain engenders intrinsically motivated behavior.
翻译:作为自由能源原则的必然结果,主动推断是描述某些类型的随机动态系统行为的一种正式方式,这些随机动态系统似乎具有感知性。在本章中,我们描述了积极推断如何将巴伊西亚决定理论和最佳巴伊西亚设计原则结合到一个单一的当务之急之下,以最大限度地减少预期的免费能源。正是这种积极推断的这一方面,可以自然地产生信息搜索行为。当从预期的自由能源中去除先前的结果偏好时,积极推断会降低到最佳的巴伊西亚设计,即信息最大化。相反,积极推论会减少巴伊西亚决定理论的模糊性和相对风险,即预期的效用最大化。我们利用这些有限的案例,说明当代理人选择优化预期效用、预期信息收益和预期自由能源的行动时,行为会如何不同。我们的T-Maz模拟显示,最优化的预期自由能源将产生目标导向的信息搜索行为,同时优化预期的效用会诱导出纯粹的剥削行为,而信息最大化地产生内在动机的行为。