Object classification is a significant task in computer vision. It has become an effective research area as an important aspect of image processing and the building block of image localization, detection, and scene parsing. Object classification from low-quality images is difficult for the variance of object colors, aspect ratios, and cluttered backgrounds. The field of object classification has seen remarkable advancements, with the development of deep convolutional neural networks (DCNNs). Deep neural networks have been demonstrated as very powerful systems for facing the challenge of object classification from high-resolution images, but deploying such object classification networks on the embedded device remains challenging due to the high computational and memory requirements. Using high-quality images often causes high computational and memory complexity, whereas low-quality images can solve this issue. Hence, in this paper, we investigate an optimal architecture that accurately classifies low-quality images using DCNNs architectures. To validate different baselines on lowquality images, we perform experiments using webcam captured image datasets of 10 different objects. In this research work, we evaluate the proposed architecture by implementing popular CNN architectures. The experimental results validate that the MobileNet architecture delivers better than most of the available CNN architectures for low-resolution webcam image datasets.
翻译:计算机对象分类是计算机视觉中的一项重要任务。 它已经成为一个有效的研究领域,是图像处理的一个重要方面,也是图像定位、探测和图像切换的构件。 低质量图像的分类对于对象颜色、 侧位比例和混杂背景的差异来说很难。 物体分类领域已经取得了显著的进步, 开发了深层相向神经神经网络( DCNNS ) 。 深神经网络已经证明是应对高分辨率图像物体分类挑战的非常强大的系统, 但是由于计算和记忆要求高, 在嵌入设备上部署这种物体分类网络仍然具有挑战性。 使用高质量图像往往会造成高计算和记忆复杂性, 而低质量图像可以解决这个问题。 因此,在本文件中,我们调查了一种最佳结构,用DCNNNS结构来精确地分类低质量图像。 为了验证低质量图像的不同基线,我们用网络摄像头拍摄的10种不同对象的图像数据集进行实验。 在这项研究中,我们通过实施广受欢迎的CNN结构来评估拟议的结构。 实验结果验证了移动网络结构能够提供比最低分辨率的图像结构更好。