The purpose of this paper is to analyze a mixed method for linear elasticity eigenvalue problem, which approximates numerically the stress, displacement, and rotation, by piecewise $(k+1)$, $k$ and $(k+1)$-th degree polynomial functions ($k\geq 1$), respectively. The numerical eigenfunction of stress is symmetric. By the discrete $H^1$-stability of numerical displacement, we prove an $O(h^{k+2})$ approximation to the $L^{2}$-orthogonal projection of the eigenspace of exact displacement for the eigenvalue problem, with proper regularity assumption. Thus via postprocessing, we obtain a better approximation to the eigenspace of exact displacement for the eigenproblem than conventional methods. We also prove that numerical approximation to the eigenfunction of stress is locking free with respect to Poisson ratio. We introduce a hybridization to reduce the mixed method to a condensed eigenproblem and prove an $O(h^2)$ initial approximation (independent of the inverse of the elasticity operator) of the eigenvalue for the nonlinear eigenproblem by using the discrete $H^1$-stability of numerical displacement, while only an $O(h)$ approximation can be obtained if we use the traditional inf-sup condition. Finally, we report some numerical experiments.


翻译:本文的目的是分析一种线性弹性本征值问题的混合方法,该方法通过分段$(k+1)$,$k$和$(k+1)$次多项式函数($k\geq 1$)数值逼近应力、位移和旋转。数值应力模态是对称的。通过数值位移的离散$H^1$稳定性,我们证明了在适当的正则性假设下,数值位移的$L^{2}$正交投影与精确位移本征空间的误差是$O(h^{k+2})$级别的。因此,通过后处理,我们获得了比传统方法更好的对精确位移本征问题的解的逼近。我们还证明了数值应力本征函数相对于泊松比的锁定性不明显。我们引入了混合化技术,将混合方法化简为一种凝聚的本征问题,并通过使用数值位移的离散$H^1$稳定性证明了非线性本征问题的初始误差为$O(h^2)$(独立于弹性算子的逆),而传统的inf-sup条件只能得到$O(h)$的逼近结果。最后,我们报告了一些数值实验。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员