This paper is concerned with a class of DC composite optimization problems which, as an extension of convex composite optimization problems and DC programs with nonsmooth components, often arises in robust factorization models of low-rank matrix recovery. For this class of nonconvex and nonsmooth problems, we propose an inexact linearized proximal algorithm (iLPA) by computing in each step an inexact minimizer of a strongly convex majorization constructed with a partial linearization of their objective functions, and establish the global convergence of the generated iterate sequence under the Kurdyka-\L\"ojasiewicz (KL) property of a potential function. In particular, by leveraging the composite structure, we provide a verifiable condition for the potential function to have the KL property of exponent $1/2$ at the limit point, so for the iterate sequence to have a local R-linear convergence rate, and clarify its relationship with the regularity used in the convergence analysis of algorithms for convex composite optimization. Finally, our iLPA is applied to a robust factorization model for matrix completions with outliers, and numerical comparison with the Polyak subgradient method confirms its superiority in computing time and quality of solutions.
翻译:暂无翻译