The low-rank canonical polyadic tensor decomposition is useful in data analysis and can be computed by solving a sequence of overdetermined least squares subproblems. Motivated by consideration of sparse tensors, we propose sketching each subproblem using leverage scores to select a subset of the rows, with probabilistic guarantees on the solution accuracy. We randomly sample rows proportional to leverage score upper bounds that can be efficiently computed using the special Khatri-Rao subproblem structure inherent in tensor decomposition. Crucially, for a $(d+1)$-way tensor, the number of rows in the sketched system is $O(r^d/\epsilon)$ for a decomposition of rank $r$ and $\epsilon$-accuracy in the least squares solve, independent of both the size and the number of nonzeros in the tensor. Along the way, we provide a practical solution to the generic matrix sketching problem of sampling overabundance for high-leverage-score rows, proposing to include such rows deterministically and combine repeated samples in the sketched system; we conjecture that this can lead to improved theoretical bounds. Numerical results on real-world large-scale tensors show the method is significantly faster than deterministic methods at nearly the same level of accuracy.


翻译:在数据分析中,低调的卡门多立方体分解法对数据分析有用,并且可以通过解析一个被定得过高的最小平方子子问题序列来计算。在考虑稀疏的加热器的情况下,我们提议用杠杆分数来勾画每个子问题,以选择行的一个子组,对溶解的准确性提供概率保障。我们随机抽样行,以利用高压分解所固有的特殊Khatri-Rao次问题结构来影响上限的得分。对于一个(d+1) $-way Exor, 素描系统中的行数是O(r ⁇ d/\epsilon) $(r ⁇ d/\epsilon), 用于在最小方块溶解分解中分解美元和美元-croball 的分数。我们随机矩阵为高分解问题总基数的(d+1美元+1美元- $- way ador) 。对于高分数的分解法中, 素谱系统中的行数是1美元(rble) $(rb) $(rán) $(rqd/rd/ d/\ eplonlonlonallonlonlonlon) ) ro) 。我们建议在最小的行中的行中, 数数数数数数数数是用来算法式的分解法几乎数为美元分解得分解得分解得分解分解法方法可以大幅) 表示得分解得分解得分解得分解得分数(o) 。提议, 。在最快的分解后,在最快的分解方法在最快,在最快的方法中将这种分解方法中将这种分解方法中将这种分解得分解得分解方法与高的分解法方法中将这种分解得分解得分解得分解得分解得分法方法与高。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员