Examined in this paper, is the Gray and Wyner achievable lossy rate region for a tuple of correlated multivariate Gaussian random variables (RVs) $X_1 : \Omega \rightarrow {\mathbb R}^{p_1}$ and $X_2 : \Omega \rightarrow {\mathbb R}^{p_2}$ with respect to square-error distortions at the two decoders. It is shown that among all joint distributions induced by a triple of RVs $(X_1,X_2, W)$, such that $W : \Omega \rightarrow {\mathbb W} $ is the auxiliary RV taking continuous, countable, or finite values, the Gray and Wyner achievable rate region is characterized by jointly Gaussian RVs $(X_1,X_2, W)$ such that $W $ is an $n$-dimensional Gaussian RV. It then follows that the achievable rate region is parametrized by the three conditional covariances $Q_{X_1,X_2|W}, Q_{X_1|W}, Q_{X_2|W}$ of the jointly Gaussian RVs. Furthermore, if the RV $W$ makes $X_1$ and $X_2$ conditionally independent, then the corresponding subset of the achievable rate region, is simpler, and parametrized by only the two conditional covariances $Q_{X_1|W}, Q_{X_2|W}$. The paper also includes the characterization of the Pangloss plane of the Gray-Wyner rate region along with the characterizations of the corresponding rate distortion functions, their test-channel distributions, and structural properties of the realizations which induce these distributions.
翻译:本文所检查的是, 在两个解码器的正负扭曲值方面, 灰色和维纳可实现的损耗率区域。 显示在所有由三倍的 RV 美元( X_ 1, X_ 2, W) 引起的联合分配中, 美元值是:\ Omega\rightrow ~mathbb R ⁇ p_ 1 美元 和 $ x_ 2 美元 :\ Omega\rightrow ~ mathbrb $ 和 $2 美元 :\ Omega\right ~rightr_ Rpathb} 美元 和 $2 美元 : Oright_ right_ right_ Rathb} 美元 美元 和 美元区域的辅助Ryr_ 2: Orgresian RV =x =x =lational=x =xx 美元 运算值区域, 其货币值=x=x=x===x=x 货币值区域, 货币=x=x=x=x=x=x==x real=x=x=x=x=x=x=x=x=x=xxxxxx=x=xx=xxxxxxxxx=xxxxxxx的可实现 ========================================================================================================================================================================================================