We consider the problem of sampling from a high-dimensional target distribution $\pi_\beta$ on $\mathbb{R}^d$ with density proportional to $\theta\mapsto e^{-\beta U(\theta)}$ using explicit numerical schemes based on discretising the Langevin stochastic differential equation (SDE). In recent literature, taming has been proposed and studied as a method for ensuring stability of Langevin-based numerical schemes in the case of super-linearly growing drift coefficients for the Langevin SDE. In particular, the Tamed Unadjusted Langevin Algorithm (TULA) was proposed in [Bro+19] to sample from such target distributions with the gradient of the potential $U$ being super-linearly growing. However, theoretical guarantees in Wasserstein distances for Langevin-based algorithms have traditionally been derived assuming strong convexity of the potential $U$. In this paper, we propose a novel taming factor and derive, under a setting with possibly non-convex potential $U$ and super-linearly growing gradient of $U$, non-asymptotic theoretical bounds in Wasserstein-1 and Wasserstein-2 distances between the law of our algorithm, which we name the modified Tamed Unadjusted Langevin Algorithm (mTULA), and the target distribution $\pi_\beta$. We obtain respective rates of convergence $\mathcal{O}(\lambda)$ and $\mathcal{O}(\lambda^{1/2})$ in Wasserstein-1 and Wasserstein-2 distances for the discretisation error of mTULA in step size $\lambda$. High-dimensional numerical simulations which support our theoretical findings are presented to showcase the applicability of our algorithm.


翻译:我们考虑的是基于高维目标分布 $\ pi ⁇ beta 的抽样问题。 美元= mathbb{ R ⁇ d$, 密度与 $\theta\ mapsto e\\\\\\\\beta U (\theta)} 使用基于朗埃文随机差异方程式( SDE ) 的清晰数字方案。 在最近的文献中, 提议并研究调制方法, 以确保朗埃文基数字方案在朗埃文SDE超级线性增长流系数的情况下的稳定性。 特别是, [Bro+19] 提议采用密度与美元成比例成正比的不调整的朗埃文Algooral- liforal=lation。 我们的诺埃文基调调调调调调调调调调调调调和调和调和调和调和的美元- 美元- 美元=lal=lal=lal 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月26日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员