For graph-valued data sampled iid from a distribution $\mu$, the sample moments are computed with respect to a choice of metric. In this work, we equip the set of graphs with the pseudo-metric defined by the $\ell_2$ norm between the eigenvalues of the respective adjacency matrices. We use this pseudo metric and the respective sample moments of a graph valued data set to infer the parameters of a distribution $\hat{\mu}$ and interpret this distribution as an approximation of $\mu$. We verify experimentally that complex distributions $\mu$ can be approximated well taking this approach.
翻译:对于从发行量 $\ mu$ 中抽取的图形估价数据 iid, 样本时间是按量度选择计算的。 在这项工作中, 我们用美元=2美元的标准为一组图表配备了相应的相邻矩阵的均值所定义的伪度值。 我们使用这一伪度值和图表估价数据 的样本时间来推断发行量 $\hat\ mu}$ 的参数, 并将这一分布值解释为 $\ mu$ 的近似值。 我们实验性地核实, 采用这种方法, 复杂的发行量 $\ mu$ 可以大致估计 $\ mu$ 。