We establish improved uniform error bounds for the time-splitting methods for the long-time dynamics of the Schr\"odinger equation with small potential and the nonlinear Schr\"odinger equation (NLSE) with weak nonlinearity. For the Schr\"odinger equation with small potential characterized by a dimensionless parameter $\varepsilon \in (0, 1]$ representing the amplitude of the potential, we employ the unitary flow property of the (second-order) time-splitting Fourier pseudospectral (TSFP) method in $L^2$-norm to prove a uniform error bound at $C(T)(h^m +\tau^2)$ up to the long time $T_\varepsilon= T/\varepsilon$ for any $T>0$ and uniformly for $0<\varepsilon\le1$, while $h$ is the mesh size, $\tau$ is the time step, $m \ge 2$ depends on the regularity of the exact solution, and $C(T) =C_0+C_1T$ grows at most linearly with respect to $T$ with $C_0$ and $C_1$ two positive constants independent of $T$, $\varepsilon$, $h$ and $\tau$. Then by introducing a new technique of {\sl regularity compensation oscillation} (RCO) in which the high frequency modes are controlled by regularity and the low frequency modes are analyzed by phase cancellation and energy method, an improved uniform error bound at $O(h^{m-1} + \varepsilon \tau^2)$ is established in $H^1$-norm for the long-time dynamics up to the time at $O(1/\varepsilon)$ of the Schr\"odinger equation with $O(\varepsilon)$-potential with $m \geq 3$, which is uniformly for $\varepsilon\in(0,1]$. Moreover, the RCO technique is extended to prove an improved uniform error bound at $O(h^{m-1} + \varepsilon^2\tau^2)$ in $H^1$-norm for the long-time dynamics up to the time at $O(1/\varepsilon^2)$ of the cubic NLSE with $O(\varepsilon^2)$-nonlinearity strength, uniformly for $\varepsilon \in (0, 1]$. Extensions to the first-order and fourth-order time-splitting methods are discussed.
翻译:我们为Schr\\"oder roder1"的长时间分解法设置了更好的统一误差框。 对于Schr\"oder city (NLSE) 的长时间分解方法, 时间分解法( 第二阶) 时间分解法( TSFP) 的方法, 美元- 2美元- 诺尔米, 以证明一个统一的错误 $( T) 和 非线性平流方程式( NLSE) 。 对于具有无维参数的Schr\" odr" odreger egleger 方程式, 美元0美元, 1美元, 美元 代表潜力的振幅, 美元- 时间分解( 美元) 时间分解法( 美元) 美元- 和 美元- 诺尔法( 美元- C) 以定期 美元- Cxxxx 平价, 以常价_ Cxxxxx 平价 。 美元 和 美元- 美元- 美元 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx