The Virtual Element Method (VEM) is a new family of numerical methods for the approximation of partial differential equations, where the geometry of the polytopal mesh elements can be very general. The aim of this article is to extend the balancing domain decomposition by constraints (BDDC) preconditioner to the solution of the saddle-point linear system arising from a VEM discretization of the two-dimensional Stokes equations. Under suitable hypotesis on the choice of the primal unknowns, the preconditioned linear system results symmetric and positive definite, thus the preconditioned conjugate gradient method can be used for its solution. We provide a theoretical convergence analysis estimating the condition number of the preconditioned linear system. Several numerical experiments validate the theoretical estimates, showing the scalability and quasi-optimality of the method proposed. Moreover, the solver exhibits a robust behavior with respect to the shape of the polygonal mesh elements. We also show that a faster convergence could be achieved with an easy to implement coarse space, slightly larger than the minimal one covered by the theory.
翻译:虚拟元素法(VEM)是一组新的数字方法,用于近似部分差异方程,多式网格元素的几何学分可以非常笼统。本条的目的是将受制约(BDDC)的先决条件的平衡域分解扩展至双维Stokes方程式分解马鞍点线系统的解决办法。在选择原始未知物的适当低位下,前提条件的线性系统结果对称和肯定,因此,可以使用先决条件的共形梯度方法来解决。我们提供了理论趋同分析,估计了假设线性线性系统的条件数目。一些数字实验证实了理论估计,显示了所提议方法的可缩放性和准优化性。此外,解析器展示了与多角网格元素形状有关的有力行为。我们还表明,在易于实施粗糙空间的情况下,可以实现更快的趋同,略度略大于理论所涵盖的最小空间。