Object placement is a crucial task for robots in unstructured environments as it enables them to manipulate and arrange objects safely and efficiently. However, existing methods for object placement have limitations, such as the requirement for a complete 3D model of the object or the inability to handle complex object shapes, which restrict the applicability of robots in unstructured scenarios. In this paper, we propose an Unseen Object Placement (UOP) method that directly detects stable planes of unseen objects from a single-view and partial point cloud. We trained our model on large-scale simulation data to generalize over relationships between the shape and properties of stable planes with a 3D point cloud. We verify our approach through simulation and real-world robot experiments, demonstrating state-of-the-art performance for placing single-view and partial objects. Our UOP approach enables robots to place objects stably, even when the object's shape and properties are not fully known, providing a promising solution for object placement in unstructured environments. Our research has potential applications in various domains such as manufacturing, logistics, and home automation. Additional results can be viewed on https://sites.google.com/view/uop-net-anonymous/, and we will release our code, dataset upon publication.
翻译:物体放置是机器人在非结构化环境中的关键任务,因为它使它们能够安全高效地操作和排列物体。然而,现有的物体放置方法存在局限性,比如需要完整的物体3D模型或无法处理复杂的物体形状,这些限制了机器人在非结构化场景中的适用性。在本文中,我们提出了一种名为Unseen Object Placement(UOP)的方法,它可以直接从单视图和部分点云中检测未见物体的稳定平面。我们使用大规模模拟数据训练模型,以便模型可以推广在3D点云中稳定平面的形状和特性之间的关系。我们通过模拟和实际机器人实验验证了我们的方法,展示了放置单视图和部分物体的最新表现。我们的UOP方法使机器人能够稳定地放置物体,即使不完全了解物体的形状和特性,为非结构化环境中的物体放置提供了一个有前途的解决方案。我们的研究在制造、物流和家庭自动化等各个领域都有潜在的应用。更多的结果可以在https://sites.google.com/view/uop-net-anonymous/上查看,并在发表时发布我们的代码和数据集。