In existing CNN based detectors, the backbone network is a very important component for basic feature extraction, and the performance of the detectors highly depends on it. In this paper, we aim to achieve better detection performance by building a more powerful backbone from existing backbones like ResNet and ResNeXt. Specifically, we propose a novel strategy for assembling multiple identical backbones by composite connections between the adjacent backbones, to form a more powerful backbone named Composite Backbone Network (CBNet). In this way, CBNet iteratively feeds the output features of the previous backbone, namely high-level features, as part of input features to the succeeding backbone, in a stage-by-stage fashion, and finally the feature maps of the last backbone (named Lead Backbone) are used for object detection. We show that CBNet can be very easily integrated into most state-of-the-art detectors and significantly improve their performances. For example, it boosts the mAP of FPN, Mask R-CNN and Cascade R-CNN on the COCO dataset by about 1.5 to 3.0 percent. Meanwhile, experimental results show that the instance segmentation results can also be improved. Specially, by simply integrating the proposed CBNet into the baseline detector Cascade Mask R-CNN, we achieve a new state-of-the-art result on COCO dataset (mAP of 53.3) with single model, which demonstrates great effectiveness of the proposed CBNet architecture. Code will be made available on https://github.com/PKUbahuangliuhe/CBNet.


翻译:在现有的CNN探测器中,主干网是基本地物提取的一个非常重要的组成部分,而探测器的性能高度依赖它。在本文中,我们的目标是通过从ResNet和ResNeXt等现有主干中建立一个更强大的主干,从ResNet和ResNeXt等现有主干中建立更强大的主干,从而实现更好的探测性能。具体地说,我们提出了一个新颖的战略,通过相邻主干网之间的复合连接,将多个相同的主干网集合起来,形成一个更强大的主干网,名为Compite Backbone网络(CBNet 网络) 。通过这种方式,CBNet反复地为前主干网的输出性能,即高层性能,作为未来主干网的投入性能的一部分,并且最终将最后一个主干网的地图(名为LEB BE BEB BB) 显示, CB-CR-NNN 和CR-CR-NC-C-CW 网络的模型和CB-CB-CR-C-CM-C-C-CM-CB-CRCFSD-CM-CM-C-CFSD-C-C-C-G-CFSD-CFSDR-S-S-S-SD-SDSDM-S-S-S-S-SD-SD-SDG-SB-S-S-S-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-S-S-S-S-SD-SD-S-S-S-S-S-S-S-S-SD-S-S-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SDG-C-SD-SD-C-SD-SD-SD-SD-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-C-C-C-C-

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
5+阅读 · 2016年12月29日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员