By no fast-forwarding theorem, the simulation time for the Hamiltonian evolution needs to be $O(\|H\| t)$, which essentially states that one can not go across the multiple scales as the simulation time for the Hamiltonian evolution needs to be strictly greater than the physical time. We demonstrated in the context of the semiclassical Schr\"odinger equation that the computational cost for a class of observables can be much lower than the state-of-the-art bounds. In the semiclassical regime (the effective Planck constant $h \ll 1$), the operator norm of the Hamiltonian is $O(h^{-1})$. We show that the number of Trotter steps used for the observable evolution can be $O(1)$, that is, to simulate some observables of the Schr\"odinger equation on a quantum scale only takes the simulation time comparable to the classical scale. In terms of error analysis, we improve the additive observable error bounds [Lasser-Lubich 2020] to uniform-in-$h$ observable error bounds. This is, to our knowledge, the first uniform observable error bound for semiclassical Schr\"odinger equation without sacrificing the convergence order of the numerical method. Based on semiclassical calculus and discrete microlocal analysis, our result showcases the potential improvements taking advantage of multiscale properties, such as the smallness of the effective Planck constant, of the underlying dynamics and sheds light on going across the scale for quantum dynamics simulation.
翻译:汉密尔顿进化的模拟时间不需要快速推移理论, 模拟时间需要为$O( ⁇ H) t, 这基本上说明人们不能跨多个尺度, 因为汉密尔顿进化的模拟时间需要严格高于物理时间。 我们在半古典的 Schr\"doninger 方程式中显示, 某类可见的计算成本可能大大低于最先进的界限。 在半古典制度( 有效的普朗克常数$h/ ll 1美元) 中, 汉密尔顿的操作者标准是$O( h)-1美元 美元。 我们显示, 用于可观测进化进化的Trotter步骤数量可以严格大于物理时间。 我们用半古典的Schr\" 量级方程式模拟某些可观察到的成本, 只需要与经典尺度相比的模拟时间。 在错误分析中, 我们改进添加的可测误差约束 [Lasser- Lubich 2020], 至 统一可测的微观误差标准是$( $) $( h) $) 的操作规范 $( hold) $1) 。 我们的快速进度的快速进度中, 的轨进化的精确进度 分析,,, 的精确级的精确级的精确度分析,, 的级的级的精确度是,,, 的精确度,, 和 基础的, 。