In solid state physics, electronic properties of crystalline materials are often inferred from the spectrum of periodic Schr\"odinger operators. As a consequence of Bloch's theorem, the numerical computation of electronic quantities of interest involves computing derivatives or integrals over the Brillouin zone of so-called energy bands, which are piecewise smooth, Lipschitz continuous periodic functions obtained by solving a parametrized elliptic eigenvalue problem on a Hilbert space of periodic functions. Classical discretization strategies for resolving these eigenvalue problems produce approximate energy bands that are either non-periodic or discontinuous, both of which cause difficulty when computing numerical derivatives or employing numerical quadrature. In this article, we study an alternative discretization strategy based on an ad hoc operator modification approach. While specific instances of this approach have been proposed in the physics literature, we introduce here a systematic formulation of this operator modification approach. We derive a priori error estimates for the resulting energy bands and we show that these bands are periodic and can be made arbitrarily smooth (away from band crossings) by adjusting suitable parameters in the operator modification approach. Numerical experiments involving a toy model in 1D, graphene in 2D, and silicon in 3D validate our theoretical results and showcase the efficiency of the operator modification approach.
翻译:在固态物理学中,晶体材料的电子特性往往从周期性Schr\'odinger操作员的频谱中推断出。由于布洛奇的理论,电子利益数量的数字计算涉及所谓的能源带布里柳因区的计算衍生物或集成物,这些衍生物或集成物是平滑的,Lipschitz通过解决Hilbert定期功能空间的平衡性椭圆性椭圆性基因值问题而不断获得的定期功能。解决这些密封值问题的经典离散战略产生非周期性或不连续性的近似能源带,这在计算数字衍生物或使用数字二次曲线时造成困难。在本篇文章中,我们研究了基于临时操作者修改方法的替代离散化战略。虽然在物理文献中提出了这一方法的具体实例,但我们在此引入了一种系统化的操作者修改方法。我们对由此产生的能源带的先前误差估计,我们表明,这些波段是定期的,并且可以通过调整操作者修改方法的适当参数来任意地平滑动(从带交叉处),这在计算数字衍生器修改方法中造成困难。我们1D在Sconcial-D级的模型上对1D的模型的模型进行3的试验,对1D的模型进行3-D的模型进行试验。