This paper introduces KRATT, a removal and structural analysis attack against state-of-the-art logic locking techniques, such as single and double flip locking techniques (SFLTs and DFLTs). KRATT utilizes powerful quantified Boolean formulas (QBFs), which have not found widespread use in hardware security, to find the secret key of SFLTs for the first time. It can handle locked circuits under both oracle-less (OL) and oracle-guided (OG) threat models. It modifies the locked circuit and uses a prominent OL attack to make a strong guess under the OL threat model. It uses a structural analysis technique to identify promising protected input patterns and explores them using the oracle under the OG model. Experimental results on ISCAS'85, ITC'99, and HeLLO: CTF'22 benchmarks show that KRATT can break SFLTs using a QBF formulation in less than a minute, can decipher a large number of key inputs of SFLTs and DFLTs with high accuracy under the OL threat model, and can easily find the secret key of DFLTs under the OG threat model. It is shown that KRATT outperforms publicly available OL and OG attacks in terms of solution quality and run-time.
翻译:暂无翻译