Multimodal Large Language Models (MLLMs) typically process a large number of visual tokens, leading to considerable computational overhead, even though many of these tokens are redundant. Existing visual token pruning methods primarily focus on selecting the most salient tokens based on attention scores, resulting in the semantic incompleteness of the selected tokens. In this paper, we propose a novel visual token pruning strategy, called \textbf{S}aliency-\textbf{C}overage \textbf{O}riented token \textbf{P}runing for \textbf{E}fficient MLLMs (SCOPE), to jointly model both the saliency and coverage of the selected visual tokens to better preserve semantic completeness. Specifically, we introduce a set-coverage for a given set of selected tokens, computed based on the token relationships. We then define a token-coverage gain for each unselected token, quantifying how much additional coverage would be obtained by including it. By integrating the saliency score into the token-coverage gain, we propose our SCOPE score and iteratively select the token with the highest SCOPE score. We conduct extensive experiments on multiple vision-language understanding benchmarks using the LLaVA-1.5 and LLaVA-Next models. Experimental results demonstrate that our method consistently outperforms prior approaches. Our code is available at \href{https://github.com/kinredon/SCOPE}{https://github.com/kinredon/SCOPE}.


翻译:多模态大语言模型(MLLMs)通常处理大量视觉令牌,导致显著的计算开销,尽管其中许多令牌是冗余的。现有的视觉令牌剪枝方法主要基于注意力分数选择最显著的令牌,导致所选令牌的语义不完整。本文提出一种新颖的视觉令牌剪枝策略,称为面向高效MLLMs的显著性-覆盖度导向令牌剪枝(SCOPE),以联合建模所选视觉令牌的显著性和覆盖度,从而更好地保持语义完整性。具体而言,我们为给定的一组选定令牌引入了集合覆盖度,该覆盖度基于令牌关系计算。随后,我们为每个未选定的令牌定义了令牌覆盖增益,量化包含该令牌所能获得的额外覆盖度。通过将显著性分数整合到令牌覆盖增益中,我们提出了SCOPE分数,并迭代选择具有最高SCOPE分数的令牌。我们在多个视觉语言理解基准上使用LLaVA-1.5和LLaVA-Next模型进行了广泛实验。实验结果表明,我们的方法始终优于先前的方法。我们的代码可在https://github.com/kinredon/SCOPE获取。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员