Scientific communities are increasingly using geographically distributed computing platforms. The current methods of compute placement predominantly use logically centralized controllers such as Kubernetes (K8s) to match tasks to available resources. However, this centralized approach is unsuitable in multi-organizational collaborations. Furthermore, workflows often need to use manual configurations tailored for a single platform and cannot adapt to dynamic changes across infrastructure. Our work introduces a decentralized control plane for placing computations on geographically dispersed compute clusters using semantic names. We assign semantic names to computations to match requests with named Kubernetes (K8s) service endpoints. We show that this approach provides multiple benefits. First, it allows placement of computational jobs to be independent of location, enabling any cluster with sufficient resources to execute the computation. Second, it facilitates dynamic compute placement without requiring prior knowledge of cluster locations or predefined configurations.
翻译:科学界正日益广泛地采用地理分布式的计算平台。当前的计算任务部署方法主要依赖逻辑上集中式的控制器(如Kubernetes,简称K8s)将任务匹配至可用资源。然而,这种集中式方法在多组织协作场景中并不适用。此外,工作流通常需要针对单一平台进行专门的手动配置,难以适应跨基础设施的动态变化。本研究提出一种去中心化的控制平面,通过语义名称将计算任务部署至地理分散的计算集群。我们为计算任务分配语义名称,使其能够与命名的Kubernetes(K8s)服务端点进行匹配。研究表明,该方法具有多重优势:首先,它使计算作业的部署位置独立化,允许任何具备充足资源的集群执行计算任务;其次,该方法支持动态计算部署,无需预先掌握集群位置信息或进行预定义配置。