Scientific communities are increasingly using geographically distributed computing platforms. The current methods of compute placement predominantly use logically centralized controllers such as Kubernetes (K8s) to match tasks to available resources. However, this centralized approach is unsuitable in multi-organizational collaborations. Furthermore, workflows often need to use manual configurations tailored for a single platform and cannot adapt to dynamic changes across infrastructure. Our work introduces a decentralized control plane for placing computations on geographically dispersed compute clusters using semantic names. We assign semantic names to computations to match requests with named Kubernetes (K8s) service endpoints. We show that this approach provides multiple benefits. First, it allows placement of computational jobs to be independent of location, enabling any cluster with sufficient resources to execute the computation. Second, it facilitates dynamic compute placement without requiring prior knowledge of cluster locations or predefined configurations.


翻译:科学界正日益广泛地采用地理分布式的计算平台。当前的计算任务部署方法主要依赖逻辑上集中式的控制器(如Kubernetes,简称K8s)将任务匹配至可用资源。然而,这种集中式方法在多组织协作场景中并不适用。此外,工作流通常需要针对单一平台进行专门的手动配置,难以适应跨基础设施的动态变化。本研究提出一种去中心化的控制平面,通过语义名称将计算任务部署至地理分散的计算集群。我们为计算任务分配语义名称,使其能够与命名的Kubernetes(K8s)服务端点进行匹配。研究表明,该方法具有多重优势:首先,它使计算作业的部署位置独立化,允许任何具备充足资源的集群执行计算任务;其次,该方法支持动态计算部署,无需预先掌握集群位置信息或进行预定义配置。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员