We comparatively study, through large-scale numerical simulation, the performance across a large set of Quantum Alternating Operator Ansatz (QAOA) implementations for finding approximate and optimum solutions to unconstrained combinatorial optimization problems. Our survey includes over 100 different mixing unitaries, and we combine each mixer with both the standard phase separator unitary representing the objective function and a thresholded version. Our numerical tests for randomly chosen instances of the unconstrained optimization problems Max 2-SAT and Max 3-SAT reveal that the traditional transverse-field mixer with the standard phase separator performs best for problem sizes of 8 through 14 variables, while the recently introduced Grover mixer with thresholding wins at problems of size 6. This result (i) corrects earlier work suggesting that the Grover mixer is a superior mixer based only on results from problems of size 6, thus illustrating the need to push numerical simulation to larger problem sizes to more accurately predict performance; and (ii) it suggests that more complicated mixers and phase separators may not improve QAOA performance.
翻译:通过大规模的数字模拟,我们比较地研究了大批量量交替操作员Ansatz(QAOA)在为不受限制的组合优化问题寻找近似和最佳解决方案方面的性能。我们的调查包括100多个不同的混合单位,我们将每种混合器与标准阶段分隔器合并,代表目标函数和阈值版本。我们随机选择的未受限制优化问题实例的数值测试最大 2 SAT 和 最大 3 SAT 显示,与标准阶段分隔器的传统的横跨场混合器在问题大小为8至14个变量方面表现最佳,而最近引入的格罗弗混合器在6号问题上赢得了临界值。这一结果(一)纠正了早先的如下工作,即格罗弗混合器只是根据大小6 问题的结果,是更高级混合器,从而说明需要将数字模拟推向更大的问题大小,以便更准确地预测性能;以及(二)它表明,更复杂的混合器和相位分离器可能无法改进QAOA的性能。